\(\int \frac {\cos ^5(c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [729]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 97 \[ \int \frac {\cos ^5(c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {3 x}{a^2}+\frac {\text {arctanh}(\cos (c+d x))}{2 a^2 d}+\frac {\cos ^3(c+d x)}{3 a^2 d}+\frac {2 \cot (c+d x)}{a^2 d}-\frac {\cot (c+d x) \csc (c+d x)}{2 a^2 d}+\frac {\cos (c+d x) \sin (c+d x)}{a^2 d} \]

[Out]

3*x/a^2+1/2*arctanh(cos(d*x+c))/a^2/d+1/3*cos(d*x+c)^3/a^2/d+2*cot(d*x+c)/a^2/d-1/2*cot(d*x+c)*csc(d*x+c)/a^2/
d+cos(d*x+c)*sin(d*x+c)/a^2/d

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {2954, 2951, 3855, 3852, 8, 3853, 2718, 2715, 2713} \[ \int \frac {\cos ^5(c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\text {arctanh}(\cos (c+d x))}{2 a^2 d}+\frac {\cos ^3(c+d x)}{3 a^2 d}+\frac {2 \cot (c+d x)}{a^2 d}+\frac {\sin (c+d x) \cos (c+d x)}{a^2 d}-\frac {\cot (c+d x) \csc (c+d x)}{2 a^2 d}+\frac {3 x}{a^2} \]

[In]

Int[(Cos[c + d*x]^5*Cot[c + d*x]^3)/(a + a*Sin[c + d*x])^2,x]

[Out]

(3*x)/a^2 + ArcTanh[Cos[c + d*x]]/(2*a^2*d) + Cos[c + d*x]^3/(3*a^2*d) + (2*Cot[c + d*x])/(a^2*d) - (Cot[c + d
*x]*Csc[c + d*x])/(2*a^2*d) + (Cos[c + d*x]*Sin[c + d*x])/(a^2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2713

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2951

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[1/a^p, Int[ExpandTrig[(d*sin[e + f*x])^n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x]
)^(m + p/2), x], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p/2] && ((GtQ[m,
0] && GtQ[p, 0] && LtQ[-m - p, n, -1]) || (GtQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]))

Rule 2954

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e +
f*x])^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \cos (c+d x) \cot ^3(c+d x) (a-a \sin (c+d x))^2 \, dx}{a^4} \\ & = \frac {\int \left (4 a^6-a^6 \csc (c+d x)-2 a^6 \csc ^2(c+d x)+a^6 \csc ^3(c+d x)-a^6 \sin (c+d x)-2 a^6 \sin ^2(c+d x)+a^6 \sin ^3(c+d x)\right ) \, dx}{a^8} \\ & = \frac {4 x}{a^2}-\frac {\int \csc (c+d x) \, dx}{a^2}+\frac {\int \csc ^3(c+d x) \, dx}{a^2}-\frac {\int \sin (c+d x) \, dx}{a^2}+\frac {\int \sin ^3(c+d x) \, dx}{a^2}-\frac {2 \int \csc ^2(c+d x) \, dx}{a^2}-\frac {2 \int \sin ^2(c+d x) \, dx}{a^2} \\ & = \frac {4 x}{a^2}+\frac {\text {arctanh}(\cos (c+d x))}{a^2 d}+\frac {\cos (c+d x)}{a^2 d}-\frac {\cot (c+d x) \csc (c+d x)}{2 a^2 d}+\frac {\cos (c+d x) \sin (c+d x)}{a^2 d}+\frac {\int \csc (c+d x) \, dx}{2 a^2}-\frac {\int 1 \, dx}{a^2}-\frac {\text {Subst}\left (\int \left (1-x^2\right ) \, dx,x,\cos (c+d x)\right )}{a^2 d}+\frac {2 \text {Subst}(\int 1 \, dx,x,\cot (c+d x))}{a^2 d} \\ & = \frac {3 x}{a^2}+\frac {\text {arctanh}(\cos (c+d x))}{2 a^2 d}+\frac {\cos ^3(c+d x)}{3 a^2 d}+\frac {2 \cot (c+d x)}{a^2 d}-\frac {\cot (c+d x) \csc (c+d x)}{2 a^2 d}+\frac {\cos (c+d x) \sin (c+d x)}{a^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.15 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.63 \[ \int \frac {\cos ^5(c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^4 \left (6 \cos (c+d x)+2 \cos (3 (c+d x))+3 \left (24 c+24 d x+8 \cot \left (\frac {1}{2} (c+d x)\right )-\csc ^2\left (\frac {1}{2} (c+d x)\right )+4 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-4 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+\sec ^2\left (\frac {1}{2} (c+d x)\right )+4 \sin (2 (c+d x))-8 \tan \left (\frac {1}{2} (c+d x)\right )\right )\right )}{24 a^2 d (1+\sin (c+d x))^2} \]

[In]

Integrate[(Cos[c + d*x]^5*Cot[c + d*x]^3)/(a + a*Sin[c + d*x])^2,x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^4*(6*Cos[c + d*x] + 2*Cos[3*(c + d*x)] + 3*(24*c + 24*d*x + 8*Cot[(c +
d*x)/2] - Csc[(c + d*x)/2]^2 + 4*Log[Cos[(c + d*x)/2]] - 4*Log[Sin[(c + d*x)/2]] + Sec[(c + d*x)/2]^2 + 4*Sin[
2*(c + d*x)] - 8*Tan[(c + d*x)/2])))/(24*a^2*d*(1 + Sin[c + d*x])^2)

Maple [A] (verified)

Time = 0.39 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.44

method result size
derivativedivides \(\frac {\frac {\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {4}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-2 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {-8 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {8}{3}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+24 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d \,a^{2}}\) \(140\)
default \(\frac {\frac {\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {4}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-2 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {-8 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {8}{3}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+24 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d \,a^{2}}\) \(140\)
parallelrisch \(\frac {48 \ln \left (\frac {1}{\sqrt {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )+\left (6 \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-30\right ) \left (\csc ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-3 \cos \left (\frac {5 d x}{2}+\frac {5 c}{2}\right )-3 \cos \left (\frac {7 d x}{2}+\frac {7 c}{2}\right )+27 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+27 \cos \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )\right ) \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-44 \cos \left (d x +c \right )+16 \cos \left (2 d x +2 c \right )-4 \cos \left (3 d x +3 c \right )+50\right ) \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+144 d x}{48 d \,a^{2}}\) \(165\)
risch \(\frac {3 x}{a^{2}}+\frac {{\mathrm e}^{3 i \left (d x +c \right )}}{24 d \,a^{2}}-\frac {i {\mathrm e}^{2 i \left (d x +c \right )}}{4 d \,a^{2}}+\frac {{\mathrm e}^{i \left (d x +c \right )}}{8 d \,a^{2}}+\frac {{\mathrm e}^{-i \left (d x +c \right )}}{8 d \,a^{2}}+\frac {i {\mathrm e}^{-2 i \left (d x +c \right )}}{4 d \,a^{2}}+\frac {{\mathrm e}^{-3 i \left (d x +c \right )}}{24 d \,a^{2}}+\frac {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}+4 i {\mathrm e}^{2 i \left (d x +c \right )}-4 i}{a^{2} d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{2 d \,a^{2}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{2 d \,a^{2}}\) \(205\)

[In]

int(cos(d*x+c)^8*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/4/d/a^2*(1/2*tan(1/2*d*x+1/2*c)^2-4*tan(1/2*d*x+1/2*c)-1/2/tan(1/2*d*x+1/2*c)^2+4/tan(1/2*d*x+1/2*c)-2*ln(ta
n(1/2*d*x+1/2*c))+16*(-1/2*tan(1/2*d*x+1/2*c)^5+1/2*tan(1/2*d*x+1/2*c)^4+1/2*tan(1/2*d*x+1/2*c)+1/6)/(1+tan(1/
2*d*x+1/2*c)^2)^3+24*arctan(tan(1/2*d*x+1/2*c)))

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.44 \[ \int \frac {\cos ^5(c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {4 \, \cos \left (d x + c\right )^{5} + 36 \, d x \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right )^{3} - 36 \, d x + 3 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 3 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 12 \, {\left (\cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 6 \, \cos \left (d x + c\right )}{12 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d\right )}} \]

[In]

integrate(cos(d*x+c)^8*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

1/12*(4*cos(d*x + c)^5 + 36*d*x*cos(d*x + c)^2 - 4*cos(d*x + c)^3 - 36*d*x + 3*(cos(d*x + c)^2 - 1)*log(1/2*co
s(d*x + c) + 1/2) - 3*(cos(d*x + c)^2 - 1)*log(-1/2*cos(d*x + c) + 1/2) + 12*(cos(d*x + c)^3 - 3*cos(d*x + c))
*sin(d*x + c) + 6*cos(d*x + c))/(a^2*d*cos(d*x + c)^2 - a^2*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^5(c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**8*csc(d*x+c)**3/(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 330 vs. \(2 (91) = 182\).

Time = 0.31 (sec) , antiderivative size = 330, normalized size of antiderivative = 3.40 \[ \int \frac {\cos ^5(c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\frac {\frac {24 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {7 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {120 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {9 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {72 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {45 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {24 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - 3}{\frac {a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {3 \, a^{2} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {a^{2} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}}} - \frac {3 \, {\left (\frac {8 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )}}{a^{2}} + \frac {144 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} - \frac {12 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}}}{24 \, d} \]

[In]

integrate(cos(d*x+c)^8*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/24*((24*sin(d*x + c)/(cos(d*x + c) + 1) + 7*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 120*sin(d*x + c)^3/(cos(d*
x + c) + 1)^3 - 9*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 72*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 45*sin(d*x +
c)^6/(cos(d*x + c) + 1)^6 - 24*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 3)/(a^2*sin(d*x + c)^2/(cos(d*x + c) + 1)
^2 + 3*a^2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 3*a^2*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + a^2*sin(d*x + c)^
8/(cos(d*x + c) + 1)^8) - 3*(8*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^2/(cos(d*x + c) + 1)^2)/a^2 + 14
4*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^2 - 12*log(sin(d*x + c)/(cos(d*x + c) + 1))/a^2)/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.73 \[ \int \frac {\cos ^5(c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\frac {72 \, {\left (d x + c\right )}}{a^{2}} - \frac {12 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{2}} + \frac {3 \, {\left (a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 8 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a^{4}} + \frac {3 \, {\left (6 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 8 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}}{a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}} - \frac {16 \, {\left (3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3} a^{2}}}{24 \, d} \]

[In]

integrate(cos(d*x+c)^8*csc(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/24*(72*(d*x + c)/a^2 - 12*log(abs(tan(1/2*d*x + 1/2*c)))/a^2 + 3*(a^2*tan(1/2*d*x + 1/2*c)^2 - 8*a^2*tan(1/2
*d*x + 1/2*c))/a^4 + 3*(6*tan(1/2*d*x + 1/2*c)^2 + 8*tan(1/2*d*x + 1/2*c) - 1)/(a^2*tan(1/2*d*x + 1/2*c)^2) -
16*(3*tan(1/2*d*x + 1/2*c)^5 - 3*tan(1/2*d*x + 1/2*c)^4 - 3*tan(1/2*d*x + 1/2*c) - 1)/((tan(1/2*d*x + 1/2*c)^2
 + 1)^3*a^2))/d

Mupad [B] (verification not implemented)

Time = 9.94 (sec) , antiderivative size = 270, normalized size of antiderivative = 2.78 \[ \int \frac {\cos ^5(c+d x) \cot ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a^2\,d}-\frac {6\,\mathrm {atan}\left (\frac {36}{36\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+6}-\frac {6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{36\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+6}\right )}{a^2\,d}+\frac {-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\frac {15\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{2}+12\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-\frac {3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{2}+20\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\frac {7\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{6}+4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {1}{2}}{d\,\left (4\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+12\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+12\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+4\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}-\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{2\,a^2\,d}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a^2\,d} \]

[In]

int(cos(c + d*x)^8/(sin(c + d*x)^3*(a + a*sin(c + d*x))^2),x)

[Out]

tan(c/2 + (d*x)/2)^2/(8*a^2*d) - (6*atan(36/(36*tan(c/2 + (d*x)/2) + 6) - (6*tan(c/2 + (d*x)/2))/(36*tan(c/2 +
 (d*x)/2) + 6)))/(a^2*d) + (4*tan(c/2 + (d*x)/2) + (7*tan(c/2 + (d*x)/2)^2)/6 + 20*tan(c/2 + (d*x)/2)^3 - (3*t
an(c/2 + (d*x)/2)^4)/2 + 12*tan(c/2 + (d*x)/2)^5 + (15*tan(c/2 + (d*x)/2)^6)/2 - 4*tan(c/2 + (d*x)/2)^7 - 1/2)
/(d*(4*a^2*tan(c/2 + (d*x)/2)^2 + 12*a^2*tan(c/2 + (d*x)/2)^4 + 12*a^2*tan(c/2 + (d*x)/2)^6 + 4*a^2*tan(c/2 +
(d*x)/2)^8)) - log(tan(c/2 + (d*x)/2))/(2*a^2*d) - tan(c/2 + (d*x)/2)/(a^2*d)